// class template array -*- C++ -*- // Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/array * This is a TR1 C++ Library header. */ #ifndef _TR1_ARRAY #define _TR1_ARRAY 1 #include #include #include #include #include #include //namespace std::tr1 namespace std { _GLIBCXX_BEGIN_NAMESPACE(tr1) /// @brief struct array [6.2.2]. /// NB: Requires complete type _Tp. template struct array { typedef _Tp value_type; typedef value_type& reference; typedef const value_type& const_reference; typedef value_type* iterator; typedef const value_type* const_iterator; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; // Support for zero-sized arrays mandatory. value_type _M_instance[_Nm ? _Nm : 1] __attribute__((__aligned__)); // No explicit construct/copy/destroy for aggregate type. void assign(const value_type& __u) { std::fill_n(begin(), size(), __u); } void swap(array& __other) { std::swap_ranges(begin(), end(), __other.begin()); } // Iterators. iterator begin() { return iterator(&_M_instance[0]); } const_iterator begin() const { return const_iterator(&_M_instance[0]); } iterator end() { return iterator(&_M_instance[_Nm]); } const_iterator end() const { return const_iterator(&_M_instance[_Nm]); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // Capacity. size_type size() const { return _Nm; } size_type max_size() const { return _Nm; } bool empty() const { return size() == 0; } // Element access. reference operator[](size_type __n) { return _M_instance[__n]; } const_reference operator[](size_type __n) const { return _M_instance[__n]; } reference at(size_type __n) { _M_check<_Nm>(__n); return _M_instance[__n]; } const_reference at(size_type __n) const { _M_check<_Nm>(__n); return _M_instance[__n]; } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return _Nm ? *(end() - 1) : *end(); } const_reference back() const { return _Nm ? *(end() - 1) : *end(); } _Tp* data() { return &_M_instance[0]; } const _Tp* data() const { return &_M_instance[0]; } private: template typename __gnu_cxx::__enable_if<_Mm, void>::__type _M_check(size_type __n) const { if (__builtin_expect(__n >= _Mm, false)) std::__throw_out_of_range(__N("array::_M_check")); } // Avoid "unsigned comparison with zero" warnings. template typename __gnu_cxx::__enable_if::__type _M_check(size_type) const { std::__throw_out_of_range(__N("array::_M_check")); } }; // Array comparisons. template inline bool operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return std::equal(__one.begin(), __one.end(), __two.begin()); } template inline bool operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one == __two); } template inline bool operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b) { return std::lexicographical_compare(__a.begin(), __a.end(), __b.begin(), __b.end()); } template inline bool operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return __two < __one; } template inline bool operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one > __two); } template inline bool operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one < __two); } // Specialized algorithms [6.2.2.2]. template inline void swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two) { std::swap_ranges(__one.begin(), __one.end(), __two.begin()); } // Tuple interface to class template array [6.2.2.5]. template class tuple_size; template class tuple_element; template struct tuple_size > { static const int value = _Nm; }; template const int tuple_size >::value; template struct tuple_element<_Int, array<_Tp, _Nm> > { typedef _Tp type; }; template inline _Tp& get(array<_Tp, _Nm>& __arr) { return __arr[_Int]; } template inline const _Tp& get(const array<_Tp, _Nm>& __arr) { return __arr[_Int]; } _GLIBCXX_END_NAMESPACE } #endif