Guest OS Backward Compatibilty for FreeBSD
Hypervisor

Teaca Ionut - Alexandru, Mihai Carabas
Automatic Control and Computers Faculty
Politehnica University of Bucharest
Emails: ionut.teaca@cti.pub.ro, mihai.carabas @cs.pub.ro

Index Terms—FreeBSD, bhyve, hypervisor, device emulation,
LPC, ATAPI, CDROM

I. INTRODUCTION

This report presents the main features implemented such as
the Redesign, LPC attachment and the emulation of ATAPI
devices. We begin with the details of design and configuration
and continue with the results showing some driver logs. At
last we present the next steps in the development and testing
for the ATA/ATAPI emulation.

II. IMPLEMENTATION
A. Redesign

1) ATA Drive: The initial implementation was designed to
work with the channel being the data structure that holds
the ATA registers set. In this way, the ATA commands are
emulated at channel level, the device being selected by the
DEV bit from the Device register. With this approach every-
thing worked quite well except when the ATA controller was
configured with two different devices such as an ATA disk
drive and an ATAPI CDROM. The problem we had to cope
was that after a Software Reset command both devices shall
reset and put their signature in the ATA registers. As long as
there are two identical devices it is not any problem since both
devices have the same signature. Obviously the solution is to
have different sets of registers for each ATA device. Moreover,
we figured out that even the PIO mechanism and the state of
the interrupts (enabled / disabled) shall be per drive instead
of channel. For this reason we redesigned the channel to take
two references to the ATA drives, and each drive to hold that
information.

2) PIO: The PIO protocol is a mechanism used to transfer
data to or from the ATA device by writing or reading the
Data register. The only commands for an ATA disk drive
that use PIO are the READ and WRITE commands aimed
to get or put data from the disk. Because of this, we have
not designed a complicated mechanism, but just handled the
transfers when the Data register was read or written. Once
that we introduce the ATAPI emulation, we realized there are
more commands that use the PIO mechanism to transfer data.
Actually, all the ATAPI commands are performed using PIO
and even the packet itself is a PIO transfer. So we had to cope
with different PIO transfers of different lengths and different
logic. Because of this, we designed a general, flexible and

easy to use mechanism to create PIO transfers. In order to set
up either a read or write PIO transfer, the ata_pio_do_transfer
function is called and it is provided the length of the transfer
and the callback which is going to be called when the transfer
ends. This callback is supposed to implement the logic of any
PIO command. Take care that each PIO setup can handle one
single transfer in progress, but this is not a problem since the
commands for a device are never issued in parallel.

3) Interrupts: There are two main types of interrupts that
a device can use to interrupt the CPU: the Level-triggered and
Edge-triggered interrupts. The description of these types of
interrupts is not the goal of this work, but the relation with
the ATA controller shall be presented. The PCI bridge uses
the level-triggered interrupts while the LPC bridge uses the
edge-triggered interrupts. So, the ATA emulation has to raise
both interrupts while working attached under the PCI bus or
LPC bus. The interfaces provided by the bhyve library to raise
these interrupts are quite different so we need to implement a
general mechanism to assert interrupts efficiently no matter
under which attachment the ATA runs. The solution is to
register different callbacks depending on what attachment is
used which will be called whenever the ATA controller wishes
to interrupt. This way we do not need to check each time if
we run under PCI or LPC so the solution is transparent and
efficient.

4) PCI attachment: One difference against the previous
work related with the PCI attachment is that from now on
we support both ATA channels emulated in the same time.
We didn’t manage to do it in the last version because of
a bug located in the PCI initialization phase solved in the
current version. Same as before, each channel can be con-
figured to support one or two drives either ATA or ATAPI
drives. In order to configure two ATA channels running under
the PCI attachment the configuration string is: -s 4:0,ata-
hd,”0,./diskdev_ata0; 1,./diskdev_atal”. Practically the semi-
colon character is used to separate the channels. The param-
eters that describe one single channel are the same as before:
“X, dev_master, dev_slave”.

B. LPC attachment

In the last work the ATA emulation was working under
the PCI attachment. However, a number of guest operating
systems do not have drivers for the PCI attachment and are not
able to use this emulation. One of the best supported devices,

especially in older operating systems, is the ATA LPC device.
An implementation of a device model for this would allow a
larger number of unmodified guest operating systems to run
under bhyve.

1) LPC configuration: The LPC bus has two IDE interfaces
(primary and secondary), also known as channels. Like the PCI
attachment, each channel can support two devices, hance up
to 4 ATA/ATAPI devices can be configured. The configuration
parameters for the LPC attachment are:

-l ata-hd, X,./DISK_MASTER,./DISK_SLAVE

OR

-l ata-hd X,./DISK_MASTER

where X is either O or 1 depending on what channel is used
and is followed by the name of the devices, the first one being
the master drive, and the second as the slave drive.

Unlike the PCI attachment where the driver probes the
ATA channel on the fly using the PCI bus enumeration,
when working under the LPC attachment some hints must be
provided so the guest drivers find out the addresses of the
IO ports and the IRQ numbers for each ATA channel. Hence
the following lines shall be added in the /boot/device.hints
configuration file (see Listing 1):

Listing 1. Boot Device Hints
hint.ata.0.at="isa"
hint.ata.0.port="0x1F0O"
hint.ata.0.irg="14"
hint.ata.l.at="isa"
hint.ata.l.port="0x170"
hint.ata.l.irg="15"

2) Differences between PCI and LPC: Even though the
ATA behaviour is the same, and the commands are emulated
in the same way no matter what attachment is used, there are
some differences between the PCI and LPC, mostly in the
initialization phase.

First of all, the PCI bridge uses the level-triggered
interrupts while the LPC bridge uses the edge-triggered
interrupts so we register different interrupt callbacks that
call the “vm_isa_pulse_irq” function provided by the bhyve
interface in order to raise interrupts.

Unlike the PCI attachment that uses the BAR registers
to address the ATA internals registers, the LPC attachment
uses two IO ports for each channel. Each 10 port has its
address at a known address which is specified in the the
/boot/device.hints. The first IO port is used to address eight
io port registers while the second IO port is used to address
the alternate register.

Even though the PIO protocol used to transfer data works
pretty much the same, the only difference being the LPC
attachment uses words of 16 bits to write or read the DATA
register unlike the PCI which uses words of 32 bits. This
could cause a worse performance for the ATA controller
working in the LPC attachment because there are two times

more accesses to the DATA register so the overhead is doubled.

Maybe the most important difference is that there is no
DMA channel for the ATA controller while running under the
LPC attachment. Hence, all the transfer commands use the
PIO protocol to read or write data. When running under the
PCI attachment, the DMA channel is provided by the PCI
adapter.

C. ATAPI Emulation

At the moment, the guest operating system installation boots
from a virtio CDROM. Even though the guest is installed
on a ATA drive, we need to get rid of the virtio emulation.
The solution is to emulate the CDROM as an ATAPI device
which is one of the best supported devices, especially in older
operating systems. ATAPI stands from ATA Packet Interface
which means the ATAPI devices get commands from the host
using packets transmitted through ATA commands. The ATAPI
commands are represented by the SCSI set, and our goal is to
emulate only the subset required by the CDROM emulation.

1) ATAPI configuration: The ATAPI CDROM devices are
configured like the ATA drives except that the name of the
image file shall have the iso extension. Otherwise the device
is considered a regular ATA drive. For example, in order to
add an ATAPI CDROM on the ATA channel 0 with the media
from release.iso these are the configuration parameters: -/ ata-
hd,0,./release.iso.

2) ATA commands: Even though our goal is to implement
the General feature set commands supported by the ATA 6
standard, in order to support ATAPI devices, we had to im-
plement two more ATA commands: ATA_ATAPI_IDENTIFY
and ATA_PACKET_CMD.

ATA_ATAPI_IDENTIFY: this ATA command is used by
the host in order to get information about the ATAPI de-
vice. The host finds out there is an ATAPI device after the
Software Reset when each device changes the registers with
its signature. If there is an ATAPI device, the host will call
the ATA_ATAPI_IDENTIFY to get extra information like the
model and serial number and other capabilities.

ATA_PACKET_CMD: this command is issued by the host in
order to send a packet command to the ATAPI device. After
this command, the host transmits the packet of 12 bytes of
data using the PIO protocol to the device. The first byte from
the packet represents the op code and it is used to select the
ATAPI command.

3) ATAPI commands: Our goal is to implement only a
subset of the SCSI commands required by the CDROM device.
Each ATAPI command is sent in a packet command of 12
bytes using the PIO protocol. So far, we managed to implement
the following commands:

INQUIRY: using this command, the host asks some informa-
tion such as the vendor, product and revision from the ATAPI
device. The device replies the data to the host through a PIO
transfer of 36 bytes.

READ_CAPACITY: the host reads the capacity of the media
CDROM. The device replies the number of blocks and the
block size of its media through a PIO transfer of 8 bytes.

READ_TOC: the host requests the Drive to read data from a
Table of Contents and transfer the result back to the Host. Our
ATAPI module emulates the media having one single track so
the response to this command is composed of Trackl in the
data zone.

READ_10: this command is issued by the host in order
to read data from the media using the PIO protocol. The
command specifies the LBA address of the starting block
and the number of blocks to be read. For each 2048 bytes
representing the size of the block the ATAPI drive interrupts
the host.

PREVENT _ALLOW and TEST_UNIT_READY: we don’t do
anything special but these commands have been implemented
only because the driver issues these commands and the drive
must acknowledge them by raising an interrupt.

III. SCENARIOS AND RESULTS

The Listing 2 shows both ATA channels attached under the
isa0 driver. Notice the irq numbers and 1O port addresses are
the ones specified in the /boot/device.hints configuration file.

Listing 2. LPC ATA channels

ataO: <ATA channel> at port
atal0: O0x1f0-0x1f7,0x3f6 irg 14 on isaOl
atal: <ATA channel> at port
atal: 0x170-0x177,0x376 irg 15 on isaOl

In the Listing 3 there is an ATA disk drive inserted in the
atal channel which is attached under the LPC bus. You can
see there is no difference if the ATA channel is attached under
the PCI or LPC bus when the ada driver probes the ATA drive.

Listing 3. ATA Disk Drive under LPC
adal at atal bus 0 scbus2 target 0 lun O
adal: <BHYVE ATA IDE DISK 1.0> ATA-6 device
adal: Serial Number 123456
adal: 16.700MB/s transfers (PIO4, PIO 65536bytes)
adal: 8192MB
adal: (16777216 512 byte sectors: 16H 63S/T 16644C)
adal: Previously was known as ad2

In the Listing 4 there is an ATAPI CDROM inserted in
the atal channel which is attached under the LPC bus. The
cd driver has probed the CDROM device and received some
information about the device using the ATAPI commands.

Listing 4. ATAPI CDROM under LPC

cd0 at atal bus 0 scbus2 target 0 lun O

cdO: <BHYVE ATAPI IDE CDROM 1.1>

cd0: Removable CD-ROM SCSI-0 device

cd0: Serial Number 123456

cd0: 16.700MB/s

cd0: transfers (PIO4, ATAPI 1l2bytes, PIO 65534bytes)
cd0: cd present [350001 x 2048 byte records]

IV. CONCLUSION AND FURTHER WORK

This report presents the relevant features implemented such
the LPC attachment and the ATAPI emulation but there is still
to develop. The next step is to understand how the data is

structured and organized on the CDROM media followed by
the implementation of the READ commands from the media.
The last step is to test the whole implementation again together
with the new features implemented to make sure there are no
bugs introduced by the new changes. The final scenario of
testing is to install the guest operation system from an ATAPI
CDROM image to the ATA disk drive.

